A
MULTIVARIATE APPROACH TO CHARACTERISE THE GROOVE SHAPE OF THE LINEAR
PARTS OF PETROGLYPHS.
Franco Urbani
Sociedad
Venezolana de espeleología.
Correo electrónico:
urbani@cantv.net
Publicado originalmente en :Rock Art Research 1998 - Volume
15 . Number 1.
Abstract. A
method based in the measurement of five variables of the grooves
from Linear parts of petroglyph images allows the quantitative characterization
of cross-sectional shape. With the data matrix several univariate
and multivariate statistical techniques can be used to evaluate
and classify such shapes and depending on the results, the rock
art specialist will be to derive interpretations.
Resumen: Se
propone un método para la caracterización cuantitativa
de la forma de las secciones transversales de los surcos de tramos
lineares (rectos o curvos) de imagenes de petroglifos. Con la medición
de cinco variables que definen la forma de la sección se
obtiene una matriz de datos que puede ser procesada con técnicas
estadísticas uni o multi variables, posterioremente, y dependiendo
de los resultados obtenidos, el especialisat en arte rupestre podrá
extraer las interpretaciones que considere apropiadas para cada
caso particular.
INTRODUCTION
The shape of the grooves of the linear sections of
petroglyph images is usually studied by measuring depth. Width and
qualitatively taking note of the shape: U or V shapes, symmetric,
asymmetric etc. (Sujo 1975).
In recent years much interest has arisen in the scientific
study of the rock art, therefore several works have appeared suggesting
techniques for its documentation (e.g.Milstreu 1996; Swantesson
1995). In some petroglyph panels containing several images made
up mainly of engraved curved or straight lines, and not of wide
low-relief parts, different images may show grooves with different
sizes and shapes, therefore to quantitatively study and compare
them, a statically multivariate data-processing approach developed
which uses the measurement of five variables of the groove cross-section
that reasonably characterises it.
DATA ACQUISITION
The basis of the method is to carefully record on
paper in a 1:2. Scale several cross-sections of the different images
whose grooves need to be characterized, preferably around ten or
more cross-sections per image, depending on its size and complexity.
Different workers, depending on what they have available,
may use different methods to record the groove cross-sectional shape
accurately. Two of them are:
(a) A medium-hardening plastic moulding clay
is applied with slight pressure on the groove and then carefully
removed, and a section perpendicular to the rock surface is cut
with a razor blade. This is then laid down on the note book and
the shape of the groove is carefully followed, and traced with a
very fine-pointed pen onto the paper with care. This measures can
be obtained with an error of about 0.5mm. Since this method may
leave unwanted residue on the rock it must be used only on petroglyphs
that have been subjected to anthropic damage, e.g. that have already
been painted.
(b) By a comb-like tool used by machine and
lathe operators that consist of a series of pins that move independently
up and down, but parallel one to another, adapting to the shape
of the object being examined. This tool comes in different sizes
and the accuracy depends on the diameter of the individual pins.
Once the tool has been applied perpendicular to the groove, the
shape must be carefully traced onto the note-book with a fine-pointed
pen.
With the cross-sections recorded on paper, once at
the office, the top line of each is defined from rim to rim and
drawn as A-B , and the deepest point (C) is located
(figure1).
|
Figure 1.
Diagram of groove cross-section variables.
|
A line perpendicular to A-B, and reaching
C is also drawn (C-D); the line E-F, parallel
to A-B and at midpoint of the C-D line is defined.
The distances a, b, c, d, and e are then measured
and transferred to a PC spreadsheet computer program (e.g. Excel,
Lotus, QPRO) (Table 1).
Image
|
Cross-section
|
a
|
b
|
c
|
d
|
e
|
a
|
a1
|
22.0
|
14.0
|
12.0
|
9.5
|
7.0
|
a
|
a2
|
22.5
|
21.0
|
15.0
|
12.5
|
7.0
|
|
Table 1.
Examples of measurements of petroglyph groove (in mm).
|
DATA PROCESSING
Depending on the rock art worker and the research
design, several mathematical and statistical calculations can be
performed once the data table is available, as follows.
Size characterisation
With any spreads program the average , minimum, maximun
and standard deviation can be calculated for each of the five variables,
or any ratio between them (table2).
|
Table 2.
Examples of measurements in two images of Piedra del Indio,
El Ávila National Park. Venezuela.
|
With the averages of the five variables the mean
shape of the groove cross-section can be defined. Univariate statistical
tests can be performed, comparing such variables from different
images (e.g.the t-test).
Shape chracterisation
Several parameters are proposed to characterise the
shape of the groove. They will be named symmetry, sharpness, V-shape
and flatness indexes. The explanations and formula deductions appear
on the Appendix.
Multivariate statistics
For the purpose of the proposed method, a suitable
PC package to perform such statistical analysis is necessary. We
have used Stratigraphics Plus© version 2.0 for Windows©.
One of the most convenient and easy-to-interpret
graphic methods is the Q-mode cluster analysis, a classification
method that presents the relationship of different samples in a
tree-like graph (dendrogram). Some examples of the use of this technique
in anthropology are the study of the graphic elements of Venezuelan
petroglyphs (Sujo 1978), classification of Roman lance point shapes
(Orton 1988: 57), and Venezuelan bat-shaped pectoral plaques (Perera,
1976). Other statistical processing methods, such as discriminant
functions or factor analysis, can also be performed.
As an example, two petroglyph images are used from
Piedra del Indio at Galindo Creek (Avila National Park, Caracas,
Venezuela), carved in quartz- feldspar-biotite gneiss of Precambrian
age. The rock is adjacent to the creek and erosive/ weathering agents
seem to have acted in the same intensity on both images, Figure
2 shows both images schematically and the locations of the measured
cross-sections.
|
Figure 2.
Two petroglyphs from Piedra del Indio, Venezuela, with
measured groove sections.
|
Figure 3 shows the Q-mode dendrogram obtained, using
twenty samples (cross-sections) with five variables ( measurements
a, b, c, d and e),and the left-asymmetric normalised
data as explained in the Appendix.
|
Figure 3.
Dendrogram produced by the Q-mode cluster analysis of the
cross-sections of the images in figure 2.
|
It can be seen that the measured cross-sections are
classified into two distinct clusters based on the phonetic distance
coefficient -one with ten samples from image 2a and two of image
2b, and a second clusters with seven samples from image 2b and one
of image 2a. This diagram and other statistical processing of the
data matrix show that there is significant statistical evidence
that the groove cross-sections of the two images studied are different.
The multivariate analysis can be carried out with
any of the following data sets: original, left-asymmetric normalised,
or usin only ratios (Appendix, Table 2). The lefty asymmetric normalised
data are preferred over the original data if only the sahpe of the
cross-section is wanted to be taken in consideration, regardless
its absolute size.
DISCUSSION
With the univariate and multivariate data processing
of the five measured variables as proposed above, the groove cross-sections
of two example images form Piedra del Indio, Venezuela, are quantitatively
characterise d as being significantly different. With these results
it is up to the rock art worker to interpret the meaning of these
data: do they relate to different ages, or to the images having
been made by different human groups, perhaps using different tools
and techniques; or have they been influenced by the rock type and
its degree of weathering, etc. However, this is beyond the scope
of the present note. The results could also be used for other purposes,
such as image classification, weathering quantification, and others.
The main limitation of this method is that it can
be accurately used only on rather deep, linear, straigh or curved
parts of petroglyphs, and not on the quite common wide low-relief
parts of images.
The author is willing to freely perform the statistical
analysis to any worker if the data matrix is provided.
APPENDIX
Proposed formulas for shape characterisation
1. Symmetry index :As can be seen in
figure1, both the ratios a/b or c/d are measurements
of the symmetry of the groove , so a value near 1 arises from fully
symmetric shapes while departing values (greater or smaller than
1) will be shown by asymmetric shapes.
Depending on the direction in which an asymmetric
cross-section is looked at, it could be recorded as left asymmetric
(a>b as figure 1) or right-asymmetric (b>a),
therefore it is necessary to normalise the a, b, c, and d
variables so that all the cross-sections be either left or right.
We selected a left asymmetry for the normalisation.
By normalising the data so that the a, b
and c, d variables are always in the order so that the first
one of each set is greater than the second, all the cross-sections
will be either left-asymmetric. From variables a and b,
we can name the larger dimension a' for of both situation and the
smaller b'. The same is done with c and d, calling c'
the larger and d' the smaller. Example:
Original data
a
|
b
|
c
|
d
|
e
|
14.0
|
22.0
|
9.5
|
12.0
|
7.0
|
22.5
|
21.0
|
15.0
|
12.5
|
7.0
|
Left-asymmetric normalised data
a'
|
b'
|
c'
|
d'
|
22.0
|
14.0
|
12.0
|
9.5
|
22.5
|
21.0
|
15.0
|
12.5
|
This new data matrix will be called left-asymmetric
normalised data (table 2) The formulas are as follows:
Symmetry 1 = SY1=[(a'+b')/2.a'].100 (1)
Symmetry 2 = SY2=[(c'+d')/2.c'].200 (2)
Symmetry index = SY = (SY1+SY2)/2 (3)
In which a value of 100% represents the maximum symmetry
attainaible while lower values represent lower symmetry.
2. Sharpness index: The ratios of widh
to depth as (a+b)/e or (c+d)/1/2e represent the sharpness of the
groove cross-section. Two ways proposed to characterise this property
are:
(1) As with symmetry, the following formula will
give an estimate of the mean sharpness index (SH) in % units.
Sharpness 1 = SH1 =[e/(a+b)].100 (4) Sharpness 2=SH2=[1/2e/(c+d)].100
(5)
Shapness index (%)=SH%=(SH1+SH2)/2 (6).
In which a value of 100% is given by a cross-section
with the same values for width and depth. Values lower than 100%
are for grooves with a width greater than depth which is the usual
case, and values greather tha 100% are for sections with a greater
depth than width, which the author has never seen in petroglyphs,
or for very asymmetric grooves. In other words, low values represent
low sharpness.
(2) Another way to visualise the sharpness of a groove
is to calculate the value of the angle at point C on the ideal triangle
formed by the upper rims and the lower point (angle at C
in triangle A-B-C,Figure1), but it can also be calculated
for the middle triangle E-F-C. Therefore:
Angle ACB=SH1° tg-1 (a/e) +tg-1(b/e) (7)
Angle ECF= SH2°á=tg-1 (c/1/2e)+tg-1(d/1/2e) (8)
Shapness index (°) =SH°=(SH1°+SH2°)/2
(9)
To visualise the magnitudes of the numbers involved
in the two methods of sharpness calculation, some examples are given
for ideal V. cross-sections:
Width
|
Depth
|
SH%
|
SH°
|
1
|
1
|
100
|
53
|
2
|
1
|
50
|
90
|
3
|
1
|
33
|
113
|
5
|
1
|
20
|
136
|
6
|
1
|
17
|
143
|
3.V-shape index: For a groove with a
cross - section of ideal V-shape, the angles ACB and ECF would have
to be the same. Since a perfec V-shape is very difficult to attain,
the usual shapes found in the field will show different degrees
ranging between V and U or curved shapes. An index of the departure
of the V-shape could be devised by the comparison of the above angles:
Angle ACB=SH1° (calculated by formula 7)
Angle ECF=SH2° (calculated by formula 8 )
So the following formula can be used:
V-shape index= VS= (SH1°/SH2°).100 (10)
In which a value of 100% represents an ideal V-shape
and lower values are more curved and U-shapes.
4.Flatness index : In grooves with a
very flat bottom, the width measures (a+b and c+b) will be similar
and much larger that the deph (e). Therefore the ratio of average
of both width measures to the depth will be an index of the bottom
flatness. [This index is not to be confused with the granulometric
flatness indexes of Cailleux and Luttig. Ed.]. This parameter is
similar to the sharpness index (formula 6).
Flatness index=FL= 100.[2.e/(a+b+c+d)] (11)
In which a 100% value will be produced for cross-sections
in which width and depth are equal, and values lower for a flatter
bottom.
REFERENCES
MILSTREU.G.1996. Ducumentation and registration of
rock art. Scandinavian society for prehistoric art, underslos.
PERERA.M.A.1979. arqueologia y arqueometria de las
placas liticas atadas del occidente de Venezuela. University Central
Venezuela, Fac. cienc. Ecomom y soc. Caracas.
ORTON,C.1988. Matematicas para arqueologos. Alianza
Editorial,Madrid.
SUJO VOLSKY.J.1975. El estudio del arte rupestre en
Venezuela.Montalban 4:708-71
SUJO VOLSKY, J. 1978. Un experimento con la Univac.
In E. Wagner and A.Zucchi (Eds). Unidad y variedad. Ensayos en homenaje
aJose M. Cruxent, p.295-327. Edicion Centro de estudios Avanzados,
Caracas.
SWANTESSON, J. O. H. 1995. Detailed measurements
of weathering on rock carving. Adoranten 1995: 18-21
¿Preguntas,
comentarios? escriba a: rupestreweb@yahoogroups.com
Cómo
citar este artículo:URBANI,
Franco. "A
multivariate approach to characterise the groove shape of the linear
parts of petroglyphs".
En Rupestre/web, https://rupestreweb.tripod.com/urbani.html
----------------------------------------
COMENTARIO ----------------------------------------
Por Pedro Argüello
G. Universidad Nacional de Colombia:
El texto del profesor Urbani propone el uso de
mediciones detalladas y de análisis estadísticos
con el fin de encontrar diferencias significativas entre petroglifos,
las cuales no son observables por medio de un registro sencillo
y macro-visual del arte rupestre.
En primer lugar, cabe destacar que el autor presenta
sus resultados en términos de las diferencias constatables
a partir de las mediciones y análisis, sin llevar a cabo
las tradicionales interpretaciones que a partir del estilo se hacían
para el arte rupestre de América del Sur. Es decir, la diferencia
entre las dos figuras estudiadas, aunque se presenta como posibilidad,
no es interpretada en términos de diferentes períodos
de ejecución, tradiciones distintas o reemplazo de unos pueblos
por otros.
En segundo lugar, y a pesar de la pequeña
muestra que compone el estudio, es un buen ejemplo de cómo
los análisis de tipo cuantitativo brindan resolución
al momento de evaluar figuras rupestres presentes incluso en la
misma roca. Lo cual es importante debido a la tendencia a entender
los paneles grabados y pintados como un solo texto o como un conjunto
unificado. No obstante, el análisis hecho a partir de mediciones
de las dimensiones de los surcos de dos petroglifos no tiene en
cuenta un elemento fundamental: los procesos erosivos que pueden
haber afectado de manera importante las dimensiones originales de
los surcos. Teniendo en cuenta que las medidas presentadas están
dadas en milímetros, se puede sospechar entonces que la disparidad,
por ser mínima, se puede presentar por fenómenos diferentes
a una elección cultural inicial. Aunque es un hecho que las
dos figuras están ubicadas en la misma roca, es también
sabido que los procesos erosivos intervienen de manera diferencial,
aunque la dureza de la roca de edad precámbrica impida que
esos procesos operen con facilidad.
En conclusión, un estudio tan detallado como
el realizado por el profesor Urbani debe ser complementado por observaciones
referentes a los procesos que pudieron contribuir a la modificación
de la figura original. En arqueología, actualmente las investigaciones
dedican importantes esfuerzos en lo que se ha llamado los procesos
de formación de sitio, en donde se analiza de manera paralela
las modificaciones producidas tanto por agentes naturales como culturales.
Estos desarrollos, que son utilizados fundamentalmente al momento
de evaluar las dataciones que se realizan en arte rupestre, deben
también ser incluidos dentro de las explicaciones que se
hacen en lo referente a las características distintivas de
las figuras. Con lo cual puede acaecer que las grandes y atractivas
explicaciones, basadas en diferencias en la técnica de elaboración
de las figuras rupestres, pueden ser puestas en cuestión
a partir de análisis pormenorizados como los llevados a cabo
por el profesor Urbani. Lo que finalmente obliga a los investigadores
a observar un cada vez mayor abanico de posibilidades explicativas,
producto de un refinamiento en la concepción, manejo y comprensión
de los datos.
P.A.G.
[Rupestre/web Inicio] [Artículos]
[Noticias] [Zonas]
[Vínculos] [Publique]
|